Fabricant et Assemblage des cartes électroniques ultra-précis, PCB haute-fréquence, PCB haute-vitesse, et PCB standard ou PCB multi-couches.
On fournit un service PCB&PCBA personnalisé et très fiable pour tout vos projets.
Technologie PCB

Technologie PCB - Conseils de mise en page RF dans la conception de PCB pour téléphones mobiles

Technologie PCB

Technologie PCB - Conseils de mise en page RF dans la conception de PCB pour téléphones mobiles

Conseils de mise en page RF dans la conception de PCB pour téléphones mobiles

2021-08-21
View:355
Author:IPCB

L'augmentation des fonctionnalités du téléphone impose des exigences plus élevées pour la conception de la carte PCB. Avec l'avènement des appareils Bluetooth, des téléphones portables et de l'ère de la 3G, les ingénieurs se concentrent de plus en plus sur les astuces de conception de circuits RF. La conception de cartes RF est souvent décrite comme un « Art noir» car il existe encore beaucoup d'incertitudes en théorie, mais cette idée n'est que partiellement vraie. Les cartes RF sont également conçues avec de nombreuses lois qui peuvent être suivies et ne doivent pas être ignorées. Cependant, dans la conception réelle, l'astuce vraiment pratique est de savoir comment compromettre ces directives et règles lorsqu'elles ne peuvent pas être mises en œuvre avec précision en raison de diverses contraintes de conception. Bien sûr, il y a un certain nombre de sujets importants de conception RF qui méritent d'être discutés, y compris l'adaptation d'impédance et d'impédance, les matériaux de couche isolante et les stratifiés, les longueurs d'onde et les ondes stationnaires, de sorte que ceux - ci ont tous une grande influence sur la CEM et L'EMI des téléphones portables. Résumé des conditions qui doivent être remplies lors de la conception d'une disposition RF:


1. Séparer autant que possible l'amplificateur de haute puissance RF (HPA) et l'amplificateur à faible bruit (LNA)


En termes simples, il s'agit d'éloigner le circuit d'émission radiofréquence de forte puissance du circuit de réception radiofréquence de faible puissance. Le téléphone a beaucoup de fonctionnalités et de composants, mais il y a peu d'espace sur le PCB. Dans le même temps, toutes ces exigences en matière de compétences de conception sont relativement élevées, compte tenu des limites les plus élevées du processus de conception de câblage. À ce stade, il peut être nécessaire de concevoir un PCB de quatre à six couches et de les faire fonctionner en alternance plutôt que simultanément. Les circuits de haute puissance comprennent parfois des tampons RF et des oscillateurs commandés en tension (VCO). Assurez - vous que la zone de haute puissance du PCB a au moins une pièce entière mise à la terre, de préférence sans trou. Bien sûr, plus il y a de cuivre, mieux c'est. Les signaux analogiques sensibles doivent être aussi éloignés que possible des signaux numériques à grande vitesse et des signaux RF.


2. Le zonage de conception peut être décomposé en zonage physique et zonage électrique.


Le zonage physique concerne principalement des questions telles que la disposition des composants, l'orientation et le blindage; Les partitions électriques peuvent continuer à être décomposées en partitions pour la distribution, le routage RF, les circuits et signaux sensibles et la mise à la terre.


2.2.1 nous discutons de la partition physique. La disposition des éléments est la clé pour obtenir une bonne conception RF. La technique la plus efficace consiste tout d'abord à fixer le composant sur le chemin RF et à ajuster son orientation de manière à minimiser la longueur du chemin RF, à éloigner l'entrée de la sortie et à séparer autant que possible les circuits de forte puissance et les circuits de faible puissance de la masse.


La méthode la plus efficace pour empiler une carte est de disposer le plan de masse principal (masse principale) sur la deuxième couche sous la couche superficielle et de câbler autant de lignes RF que possible sur la couche superficielle. Minimiser la taille des pores sur le chemin RF peut réduire non seulement l'inductance du chemin, mais aussi les points de soudure virtuels sur la masse principale et réduire les risques de fuite d'énergie RF dans d'autres zones du stratifié. Dans l'espace physique, un circuit linéaire tel qu'un amplificateur Multi - étages est généralement suffisant pour isoler plusieurs zones RF les unes des autres, mais un duplexeur, un mélangeur et un amplificateur / mélangeur à fréquence intermédiaire ont toujours plusieurs RF / if. Les signaux interfèrent les uns avec les autres, il faut donc prendre soin de minimiser cet effet.


2.2.2 les traces RF et MF doivent être croisées dans la mesure du possible et mises à la terre entre elles dans la mesure du possible. Le chemin RF correct est très important pour la performance de l'ensemble de la carte PCB, c'est pourquoi la disposition des éléments occupe généralement la majeure partie du temps dans la conception de la carte PCB d'un téléphone portable. Dans la conception de la carte PCB du téléphone portable, généralement le circuit d'amplification à faible bruit peut être placé d'un côté de la carte PCB, l'amplificateur à haute puissance de l'autre côté et enfin connecté à l'extrémité RF et au traitement en bande de base du même côté via un duplexeur. Sur l'antenne à la fin de l'appareil. Quelques astuces sont nécessaires pour s'assurer que les trous traversants ne transmettent pas l'énergie RF d'un côté à l'autre de la plaque. Une technique courante consiste à utiliser des trous borgnes des deux côtés. Les effets néfastes des trous traversants peuvent être minimisés en les disposant dans des zones sans interférence RF des deux côtés de la carte PCB. Il est parfois impossible d'assurer une isolation suffisante entre plusieurs blocs de circuit. Dans ce cas, il est nécessaire d'envisager l'utilisation d'un blindage métallique pour masquer l'énergie RF dans la zone RF. Le bouclier métallique doit être soudé au sol et doit être conservé avec les composants. La bonne distance et donc besoin d'occuper l'espace précieux de la carte PCB. Il est très important d'assurer autant que possible l'intégrité du bouclier. Les lignes de signal numérique entrant dans le blindage métallique doivent aller aussi loin que possible dans la couche interne, la couche PCB sous la couche de câblage étant de préférence une couche de mise à la terre. Les lignes de signaux RF peuvent être tirées d'un petit écart au fond du blindage métallique et d'une couche de câblage au niveau de l'écart de masse, mais avec autant de terre que possible autour de l'écart, les mises à la terre sur les différentes couches peuvent être reliées entre elles par de multiples pores.


2.2.3 un découplage approprié et efficace de la puissance de la puce est également très important. De nombreuses puces RF avec circuits linéaires intégrés sont très sensibles au bruit de puissance. Typiquement, jusqu'à quatre condensateurs et une inductance d'isolement doivent être utilisés par puce pour s'assurer que tous les bruits de puissance sont filtrés. Un circuit intégré ou un amplificateur a généralement une sortie à drain ouvert et nécessite donc une inductance de pull - up pour fournir une charge RF Haute impédance et une alimentation DC basse impédance. Le même principe s'applique au découplage de l'alimentation du côté de cette inductance. Certaines puces nécessitent plusieurs Alimentations pour fonctionner, vous pouvez donc avoir besoin de deux ou trois groupes de condensateurs et d’inductances pour les découpler séparément. Les inducteurs sont rarement connectés en parallèle, car cela crée un transformateur creux et provoque des interférences mutuelles. Les signaux, et donc la distance entre eux, doivent être au moins égaux à la hauteur de l'un des dispositifs, ou disposés à angle droit pour minimiser leur inductance mutuelle.


2.2.4 les principes du zonage électrique sont généralement les mêmes que ceux du zonage physique, mais ils contiennent également d'autres facteurs. Certaines parties du téléphone utilisent des tensions de fonctionnement différentes et sont contrôlées par un logiciel pour prolonger la durée de vie de la batterie. Cela signifie que le téléphone doit faire fonctionner plusieurs sources d'alimentation, ce qui crée plus de problèmes pour l'isolation. L'alimentation est généralement introduite à partir du connecteur et immédiatement découplée pour filtrer tout bruit à l'extérieur de la carte, puis distribuée après avoir traversé un ensemble d'interrupteurs ou de régulateurs. La plupart des circuits sur la carte PCB du téléphone ont peu de courant continu, de sorte que la largeur des pistes n'est généralement pas un problème. Cependant, il est nécessaire de câbler individuellement la ligne à courant élevé la plus large possible pour l'alimentation de l'amplificateur de forte puissance afin de minimiser les chutes de tension de transmission. Pour éviter une perte de courant excessive, de multiples pores sont nécessaires pour transporter le courant d'une couche à l'autre. De plus, si le découplage n'est pas suffisant au niveau des broches d'alimentation de l'amplificateur de forte puissance, le bruit de forte puissance rayonnera sur toute la carte et causera divers problèmes. La mise à la terre d'un amplificateur de haute puissance est essentielle et nécessite souvent la conception d'un blindage métallique pour celui - ci. Dans la plupart des cas, il est également essentiel de s'assurer que la sortie RF est éloignée de l'entrée RF. Cela s'applique également aux amplificateurs, Buffers et filtres. Dans le pire des cas, si les sorties des amplificateurs et des Buffers sont renvoyées à leurs entrées avec la phase et l'amplitude appropriées, elles peuvent avoir des oscillations auto - excitées. Dans le meilleur des cas, ils seront en mesure de fonctionner de manière stable dans toutes les conditions de température et de tension. En effet, ils peuvent devenir instables et ajouter du bruit et des signaux d'intermodulation au Signal RF. Si la ligne de Signal RF doit être rebouclée de l'entrée vers la sortie du filtre, cela peut sérieusement endommager le caractère passe - bande du filtre. Pour obtenir une bonne isolation entre l'entrée et la sortie, il faut d'abord disposer d'une masse autour du filtre, puis disposer d'une masse au niveau de la couche inférieure du filtre et la relier à la masse principale autour du filtre. C'est aussi un bon moyen de garder les lignes de signal qui doivent traverser le filtre aussi loin que possible des broches du filtre.


De plus, la mise à la terre à divers endroits sur toute la plaque doit être effectuée avec beaucoup de soin, sinon des canaux de couplage seront introduits. Parfois, vous pouvez choisir d'adopter une seule extrémité ou une ligne de Signal RF équilibrée. Les principes de l'interférence croisée et de l'EMC / EMI s'appliquent également ici. Des lignes de Signal RF équilibrées peuvent réduire le bruit et les interférences croisées si elles sont correctement câblées, mais leur impédance est généralement élevée et il est essentiel de maintenir une largeur de ligne raisonnable pour obtenir une source de signal, une trace et une impédance de charge adaptées. Le câblage réel peut avoir quelques difficultés. Un buffer peut être utilisé pour améliorer l'effet d'isolation, car il peut diviser le même signal en deux et être utilisé pour piloter différents circuits, en particulier un oscillateur local peut nécessiter un buffer pour piloter plusieurs mélangeurs. Lorsque le mélangeur atteint l'état d'isolation en mode commun à la fréquence RF, il ne fonctionnera pas correctement. Les Buffers isolent bien les variations d'impédance à différentes fréquences, de sorte que les circuits ne interfèrent pas les uns avec les autres. Les tampons sont utiles pour la conception. Ils peuvent suivre les circuits qui doivent être pilotés, de sorte que les trajectoires de sortie haute puissance sont très courtes. Du fait que le niveau du signal d'entrée des Buffers est relativement faible, ils ne perturbent pas facilement les autres signaux sur la carte. Le circuit provoque des interférences. Un oscillateur commandé en tension (VCO) peut convertir une tension variable en une fréquence variable. Cette fonctionnalité est utilisée pour la commutation de Canal à grande vitesse, mais elle convertit également le bruit de suivi sur la tension de commande en petites variations de fréquence, ce qui permet au Signal RF d'augmenter le bruit.


2.2.5 pour que le bruit n'augmente pas, plusieurs aspects doivent être pris en compte: premièrement, la bande passante attendue de la ligne de commande peut être comprise entre DC et 2 MHz et il est pratiquement impossible d'éliminer ce bruit large bande par filtrage; Deuxièmement, la ligne de contrôle VCO fait généralement partie de la boucle de rétroaction qui contrôle la fréquence. Il peut introduire du bruit dans de nombreux endroits, de sorte que les lignes de contrôle VCO doivent être manipulées avec beaucoup de soin. Assurez - vous que la mise à la terre sous les traces RF est solide et que tous les composants sont fermement attachés à la terre principale et isolés des autres traces qui peuvent causer du bruit. De plus, il est nécessaire de s'assurer que l'alimentation du VCO est suffisamment découplée. Comme la sortie RF du VCO est généralement de niveau relativement élevé, le signal de sortie du VCO peut facilement interférer avec d'autres circuits et une attention particulière doit donc être accordée au VCO. En effet, le VCO est souvent placé à l'extrémité de la zone RF et nécessite parfois un blindage métallique. Le circuit résonant (un pour l'émetteur et l'autre pour le récepteur) est lié au VCO, mais il a également ses propres caractéristiques. En termes simples, un circuit résonant est un circuit résonant parallèle avec une diode Capacitive qui aide à régler la fréquence de fonctionnement du VCO et à moduler la parole ou les données en un signal RF. Tous les principes de conception VCO s'appliquent également aux circuits résonants. Les circuits résonnants sont généralement très sensibles au bruit car ils contiennent un nombre important d'éléments, ont une large zone de distribution sur la carte et fonctionnent généralement à des fréquences RF très élevées. Les signaux sont généralement disposés sur des broches adjacentes de la puce, mais ces broches de signal doivent fonctionner avec des inductances et des condensateurs relativement grands, ce qui nécessite à son tour que ces inductances ou condensateurs soient positionnés très près et soient connectés de nouveau sur une boucle de commande sensible au bruit. Ce n'est pas facile de le faire.


Les amplificateurs à contrôle automatique de gain (AGC) sont également un endroit vulnérable aux problèmes, et il y aura des amplificateurs AGC dans les circuits d'émission et de réception. Les amplificateurs AGC peuvent généralement filtrer efficacement le bruit, mais comme les téléphones mobiles ont la capacité de gérer les variations rapides de l'intensité des signaux émis et reçus, il est nécessaire que les circuits AGC aient une bande passante assez large, ce qui facilite l'introduction du bruit des amplificateurs AGC sur certains circuits critiques. Conception les circuits AGC doivent être conformes à de bonnes techniques de conception de circuits analogiques associées à de courtes broches d'entrée d'amplificateur opérationnel et à de courts chemins de rétroaction, qui doivent tous deux être éloignés des traces de signaux RF, if ou numériques à grande vitesse. De même, une bonne mise à la terre est indispensable et l'alimentation de la puce doit être bien découplée. S'il est nécessaire de transporter le fil à l'entrée ou à la sortie, il est préférable de le faire fonctionner à la sortie. En général, l'impédance en sortie est beaucoup plus faible et ne provoque pas facilement de bruit. En général, plus le niveau du signal est élevé, plus il est facile d'introduire du bruit dans d'autres circuits. Dans toutes les conceptions de PCB, il est un principe général d'éloigner autant que possible les circuits numériques des circuits analogiques, ce qui s'applique également aux conceptions de PCB RF. La mise à la terre analogique commune et la mise à la terre pour masquer et séparer les lignes de signal sont généralement tout aussi importantes. Par conséquent, une planification minutieuse, une mise en page réfléchie des composants et une évaluation approfondie de la mise en page * sont tous très importants au début de la conception. RF devrait également utiliser la même méthode pour éloigner les lignes des lignes analogiques et de certains signaux numériques très critiques. Toutes les pistes RF, les Plots et les composants doivent être remplis de cuivre de masse autant que possible et connectés à la masse principale autant que possible. Si les traces RF doivent traverser les lignes de signal, essayez de câbler une couche le long des traces RF entre elles à la masse de la terre principale. Si ce n'est pas possible, assurez - vous qu'ils se croisent. Cela minimise le couplage capacitif. Dans le même temps, placez autant de terre que possible autour de chaque piste RF et connectez - la à la terre principale. De plus, minimiser la distance entre les traces RF parallèles permet de minimiser le couplage inductif. L'isolation fonctionne mieux lorsque le plan de sol solide est placé directement sur la première couche sous la surface, bien que d'autres méthodes soigneusement conçues fonctionnent également. Sur chaque couche de la carte PCB, placez autant de terre que possible et connectez - la à la terre principale. Placer les traces le plus près possible pour augmenter le nombre de traces de la couche de signal interne et de la couche de distribution électrique, et ajuster les traces de manière appropriée pour que les Vias de connexion à la terre puissent être disposés sur les traces isolées de la surface. La mise à la terre libre sur les différentes couches du PCB doit être évitée car elles peuvent capter ou injecter du bruit comme une petite antenne. Dans la plupart des cas, si vous ne pouvez pas les connecter à la terre principale, vous feriez mieux de les supprimer.


3. Lors de la conception de la carte PCB du téléphone portable, il convient de prêter attention aux aspects suivants


3.3.1 manipulation de l'alimentation et du fil de terre


Même si le câblage dans l'ensemble de la carte PCB est bien fait, les interférences dues à une mauvaise prise en compte de l'alimentation et du câblage de terre peuvent réduire les performances du produit et parfois même affecter son succès. Par conséquent, le câblage des fils et des fils de terre doit être pris au sérieux et les interférences sonores générées par les fils et les fils de terre doivent être minimisées pour assurer la qualité du produit. Chaque ingénieur travaillant sur la conception de produits électroniques comprend les causes du bruit entre la ligne de terre et la ligne d'alimentation et ne présente maintenant que la réduction du bruit:


(1) Il est bien connu d'ajouter un condensateur de découplage entre l'alimentation et la masse.

(2) Élargissez la largeur de la ligne d'alimentation et de la ligne de terre autant que possible, de préférence la ligne de terre est plus large que la ligne d'alimentation, leur relation est: ligne de terre > ligne d'alimentation > ligne de signal, généralement la largeur de la ligne de signal est: 0,2 ï½ 0,3 mm, la largeur la plus étroite peut atteindre 0,05 ï½ 0,07 mm, la ligne d'alimentation est de 1,2 ï½ 0,5 mm. Pour les circuits imprimés numériques, Une large ligne de terre peut être utilisée pour former une boucle, c'est - à - dire pour former un réseau de mise à la terre à utiliser (la mise à la terre d'un circuit analogique ne peut pas être utilisée de cette manière).

(3) utilisez une grande surface de couche de cuivre comme fil de terre pour connecter les endroits non utilisés sur la carte de circuit imprimé comme fil de terre. Ou peut être fait en panneau multicouche, l'alimentation et le fil de terre occupent chacun une couche.

Transmission automatique

3.3.2 traitement de masse commun des circuits numériques et analogiques


De nombreuses cartes de circuits imprimés ne sont plus des circuits monofonctionnels (numériques ou analogiques), mais consistent en un mélange de circuits numériques et analogiques. Il est donc nécessaire, lors du câblage, de prendre en compte les interférences mutuelles entre elles et notamment les interférences sonores sur les lignes de masse. La fréquence du circuit numérique est élevée et la sensibilité du circuit analogique est forte. Pour les lignes de signal, les lignes de signal haute fréquence doivent être aussi éloignées que possible des dispositifs de circuit analogique sensibles. Pour la ligne de terre, l'ensemble du PCB n'a qu'un seul nœud avec l'extérieur, de sorte que le problème de la mise à la terre commune numérique et analogique doit être résolu à l'intérieur du PCB, tandis que la mise à la terre numérique et analogique à l'intérieur de la carte sont pratiquement séparées, Elles ne sont pas connectées entre elles, mais à l'interface qui relie le PCB à l'extérieur (comme une fiche, etc.). Il existe une connexion de court - circuit entre la mise à la terre numérique et la mise à la terre analogique. Notez qu'il n'y a qu'un seul point de connexion. Il existe également une mise à la terre non commune sur le PCB, qui est déterminée par la conception du système.


3.3.3 ligne de signal posée sur la couche électrique (sol)


Dans le câblage de la carte d'impression multicouche, comme il n'y a pas beaucoup de fils non posés dans la couche de ligne de signal, l'ajout de plus de couches causera des déchets, augmentera la charge de travail de production et les coûts augmenteront en conséquence. Pour résoudre cette contradiction, on peut envisager de câbler au niveau électrique (à la terre). La couche d'alimentation doit être considérée en premier et la couche de mise à la terre en second. Parce qu'il est préférable de maintenir l'intégrité de la formation.


3.3.4 traitement des jambes de connexion de fil de grande surface


Dans une grande zone de mise à la Terre (électrique), les jambes des composants généraux y sont toutes connectées. Le traitement des jambes de connexion nécessite une prise en compte intégrée. En termes de Performances électriques, il est préférable de connecter les Plots des broches de l'élément à la surface de cuivre. Il existe certains dangers indésirables lors du soudage et de l'assemblage des composants, tels que: 1. Le soudage nécessite un chauffage haute puissance. 2. Facile à produire le soudage par pointillés. Par conséquent, les propriétés électriques et les exigences de processus sont toutes deux réalisées en Plots à motifs croisés, appelés panneaux isolants, souvent appelés Plots thermiques, de sorte que des points de soudure virtuels peuvent être créés lors du soudage en raison de la chaleur excessive de la section transversale. La vie sexuelle est considérablement réduite. Le traitement de la branche d'alimentation (terre) de la carte multicouche est identique.


3.3.5 rôle des systèmes de réseau dans le câblage


Dans de nombreux systèmes CAO, le câblage est déterminé par le système de réseau. La grille est trop dense, les chemins sont augmentés, mais les pas sont trop petits et la quantité de données dans les champs est trop importante. Cela implique nécessairement des exigences plus élevées en termes d'espace de stockage de l'appareil, ainsi que la vitesse de calcul de l'électronique basée sur ordinateur. L'impact est grand. Certains chemins sont inefficaces, par example ceux occupés par des coussinets ou des trous de montage et de fixation de pieds de pièces. Une grille trop clairsemée et trop peu de canaux ont une grande influence sur le taux de distribution. Par conséquent, il doit y avoir un système de grille bien espacé et raisonnable pour soutenir le câblage. La distance entre les piliers d'un élément standard est de 0,1 pouce (2,54 mm), de sorte que la base d'un système de grille est généralement fixée à 0,1 pouce ou à un multiple entier inférieur à 0,1 pouce, par exemple: 0,05 pouce, 0025 pouce, 0,02 pouce, etc.


4. Les astuces et les méthodes de conception de PCB haute fréquence sont les suivantes:


4.4.1 l'angle d'angle de la ligne de transmission doit être de 45° pour réduire les pertes de retour


4.4.2 des circuits imprimés isolés à haute performance dont les valeurs de constante d'isolation sont strictement contrôlées par classe doivent être utilisés. Cette approche favorise une gestion efficace du champ électromagnétique entre le matériau isolant et le câblage adjacent.


4.4.3 les spécifications de conception des PCB relatives à la gravure de haute précision devraient être améliorées. Il faut tenir compte du fait que l'erreur totale sur la largeur de ligne spécifiée est de + / - 0007 pouce, que la contre - dépouille et la section transversale de la forme du câblage doivent être gérées et que les conditions de placage des parois latérales du câblage doivent être spécifiées. La géométrie du câblage (fil) et la gestion globale de la surface de revêtement sont importantes pour résoudre le problème des effets cutanés liés aux fréquences micro - ondes et pour atteindre ces spécifications.


4.4.4 les fils saillants ont une inductance de prise, évitez donc les éléments avec des fils. Dans un environnement à haute fréquence, il est préférable d'utiliser des composants montés en surface.


4.4.5 pour les porosités de signal, évitez d'utiliser le processus de traitement des porosités (PTH) sur les plaques sensibles, car ce processus peut entraîner une inductance de fil au niveau des porosités.


4.4.6 fournir un niveau de sol suffisant. Connectez ces plans de masse à l'aide de trous moulés pour empêcher les champs électromagnétiques 3D d'affecter la carte.


4.4.7 lors du choix d'un procédé de nickelage chimique ou d'immersion d'or, le placage ne doit pas être effectué selon la méthode hasl. Cette surface galvanisée permet d'obtenir un meilleur effet Dermo - cosmétique pour les courants à haute fréquence (Figure 2). De plus, ce revêtement hautement soudable nécessite moins de plomb, ce qui contribue à réduire la pollution environnementale.


4.4.8 le flux de soudure peut empêcher l'écoulement de la pâte à souder. Cependant, en raison de l'incertitude de l'épaisseur et de l'ignorance des propriétés d'isolation, toute la surface de la carte est recouverte d'un matériau de soudure, ce qui entraînera une grande variation de l'énergie électromagnétique dans la conception des microrubans. Typiquement, un barrage de soudure est utilisé comme masque de soudure. Champ électromagnétique. Dans ce cas, nous gérons le passage du microruban au câble coaxial. Dans un câble coaxial, les couches de terre sont annulaires entrelacées et régulièrement espacées. Dans la microbande, le plan de masse est situé sous la ligne active. Cela introduit certains effets de bord qui doivent être compris, prédits et pris en compte dans le processus de conception. Bien entendu, cette désadaptation entraîne également des pertes de retour et cette désadaptation doit être minimisée pour éviter le bruit et les perturbations du signal.


5. Conception de compatibilité électromagnétique


La compatibilité électromagnétique fait référence à la capacité des appareils électroniques à fonctionner de manière coordonnée et efficace dans divers environnements électromagnétiques. Le but de la conception de compatibilité électromagnétique est de permettre à l'électronique de supprimer toutes sortes de perturbations externes, permettant à l'électronique de fonctionner correctement dans un environnement électromagnétique particulier, tout en réduisant les interférences électromagnétiques de l'électronique elle - même sur d'autres appareils électroniques.


5.5.1 choisir une largeur de fil raisonnable


Étant donné que les perturbations de choc générées par les courants transitoires sur la ligne imprimée sont principalement causées par l'inductance de la ligne imprimée, l'induction de la ligne imprimée doit être minimisée. L'inductance d'un fil imprimé est proportionnelle à sa longueur et inversement proportionnelle à sa largeur, de sorte qu'un fil court et précis favorise la suppression des interférences. Les lignes de signal des conducteurs d'horloge, des conducteurs de ligne ou des conducteurs de bus transportent généralement des courants transitoires importants et les conducteurs imprimés doivent être aussi courts que possible. Pour les circuits à composants discrets, la largeur de la ligne imprimée est d'environ 1,5 mm, ce qui peut parfaitement répondre aux exigences; Pour les circuits intégrés, la largeur de la ligne imprimée peut être choisie entre 0,2 mm et 1,0 mm.


5.5.2 adopter la bonne stratégie de câblage


L'utilisation d'un câblage égal peut réduire l'inductance du fil, mais l'inductance mutuelle et la capacité de distribution entre les fils augmentent. Si la disposition le permet, il est préférable d'utiliser une structure de câblage en grille. La méthode spécifique consiste à câbler horizontalement un côté de la plaque d'impression et l'autre côté. Il est alors relié aux trous métallisés au niveau des trous croisés.


5.5.3 afin de supprimer la diaphonie entre les conducteurs des circuits imprimés, lors de la conception du câblage, essayez d'éviter le câblage isoélectrique à longue distance et de prolonger la distance entre les câblages autant que possible, les lignes de signal, de masse et d'alimentation doivent être aussi éloignées que possible. Ne croise pas. Une ligne d'impression avec mise à la terre entre certaines lignes de signal très sensibles aux interférences peut efficacement supprimer la diaphonie.


5.5.4 afin d'éviter que des signaux à haute fréquence ne produisent un rayonnement électromagnétique lorsqu'ils traversent une ligne imprimée, il convient également de prendre note des points suivants lors du câblage des circuits imprimés:


(1) Minimiser la discontinuité du fil imprimé, par exemple, ne changez pas la largeur du fil, l'angle du fil doit être supérieur à 90 degrés pour interdire le câblage circulaire.

(2) Les conducteurs de signal d'horloge sont les plus susceptibles de produire des interférences de rayonnement électromagnétique. Lors du câblage, le fil doit être proche de la boucle de mise à la terre et le conducteur doit être proche du connecteur.

(3) Le conducteur de l’autobus doit être à proximité de l’autobus qu’il doit conduire. Pour ceux qui quittent la carte de circuit imprimé, le conducteur doit être situé à côté du connecteur.

(4) Le câblage du bus de données doit être câblé avec un fil de terre de signal entre chaque deux fils de signal. Il est préférable de placer la boucle de terre à côté du cordon d'adresse le moins important, car ce dernier transporte généralement un courant à haute fréquence.

(5) Lorsque des circuits logiques à haute, moyenne et basse vitesse sont disposés sur une plaque imprimée, l’appareil doit être disposé de la manière indiquée à la figure 1.


5.5.5 suppression des interférences par réflexion


Pour supprimer les perturbations réfléchissantes apparaissant aux bornes de la ligne imprimée, il convient, en plus des besoins particuliers, de raccourcir au maximum la longueur de la ligne imprimée et d'utiliser des circuits lents. Une adaptation de borne peut être ajoutée si nécessaire, c'est - à - dire qu'une résistance adaptée de même résistance est ajoutée aux extrémités de la ligne de transmission pour la mise à la masse et les bornes d'alimentation. Par expérience, pour les circuits TTL généralement plus rapides, lorsque la longueur de la ligne imprimée dépasse 10 cm, des mesures d'adaptation des bornes doivent être prises. La valeur de la résistance de la résistance d'adaptation doit être déterminée en fonction de la valeur maximale du courant d'entraînement et du courant d'absorption en sortie du circuit intégré.


5.5.6 adopter une stratégie de câblage de ligne de signal différentiel lors de la conception de la carte


Les paires de signaux différentiels avec un câblage très serré seront également étroitement couplées les unes aux autres. Ce couplage mutuel réduira les émissions EMI. Souvent (avec quelques exceptions bien sûr) Les signaux différentiels sont également des signaux à haute vitesse, de sorte que les règles de conception à haute vitesse s'appliquent généralement. C'est notamment le cas pour le routage de signaux différentiels, notamment lors de la conception de lignes de signaux pour des lignes de transmission. Cela signifie que nous devons soigneusement concevoir le câblage de la ligne de signal pour nous assurer que l'impédance caractéristique de la ligne de signal est continue et constante le long de la ligne de signal. Lors de la mise en page et du câblage d'une paire différentielle, nous voulons que les deux lignes PCB de la paire différentielle soient exactement les mêmes. Cela signifie que dans une application pratique, les meilleurs efforts doivent être faits pour s'assurer que les lignes PCB dans la paire différentielle ont exactement la même impédance et que la longueur du câblage est exactement la même. Les lignes PCB différentielles sont généralement câblées par paires et la distance entre elles reste constante partout le long de la direction des paires de lignes. Dans des conditions normales, le placement et le câblage des paires différentielles sont toujours aussi proches que possible.