Hassas PCB İmalatı, Yüksek Frekanslı PCB, Yüksek Hızlı PCB, Standart PCB, Çok Katmanlı PCB ve PCB Montajı.
PCB Teknoloji

PCB Teknoloji - PCB devre tahtalarından sıcaklığı parçalamak için 11 yol

PCB Teknoloji

PCB Teknoloji - PCB devre tahtalarından sıcaklığı parçalamak için 11 yol

PCB devre tahtalarından sıcaklığı parçalamak için 11 yol

2021-11-02
View:351
Author:Downs

1. Yüksek sıcaklık üretim cihazı artı radiatör ve sıcaklık yönetme tabağı

PCB'deki küçük bir sayı komponentler büyük bir miktar ısı (3'den az) oluştururken ısıtma komponentine bir radyatör veya ısıtma boru eklenebilir. Temperatura düşürülmeyeceğinde, bir hayranlı radyatör ısı bozulma etkisini arttırmak için kullanılabilir. ısıtma aygıtlarının sayısı büyük (3'den fazla) olduğunda, büyük bir ısı dağıtma örtüsü (tahta) kullanılabilir. Bu, PCB'deki ısıtma aygıtlarının pozisyonu ve yüksekliğine göre özel bir ısı dağıtıcısı veya büyük bir sıcak dağıtıcısı, farklı komponent yüksekliğini kesin. Sıcak patlama kapağı komponentin yüzeyinde tamamen kapalı ve sıcaklığı boşaltmak için her komponent ile bağlantıdır. Ancak sıcaklık parçalama etkisi toplantı ve komponentlerinin karışması sıcaklık sıcaklığının yüksekliğinden dolayı iyi değildir. Genelde sıcaklık patlama etkisini geliştirmek için komponentin yüzeyine yumuşak sıcaklık fazı değiştirme sıcaklık patlaması eklenir.

2. PCB tahtasından sıcak patlama

Şu and a geniş kullanılan PCB tahtaları bakra çantası/epoksi cam çantası substratları veya fenolik resin cam çantası substratları ve küçük bir miktar kağıt tabanlı bakra çantası tahtaları kullanılır. Bu substratların mükemmel elektrik özellikleri ve işleme özellikleri varsa da zayıf ısı bozulması var.

pcb tahtası

Yüksek ısınma komponentleri için sıcaklık patlama yolu olarak, PCB'nin sıcaklığını sıcaklık yapmasını beklemek neredeyse imkansız, ama komponentin yüzeyinden çevre havaya kadar sıcaklık patlamak. Fakat elektronik ürünler komponentlerin, yüksek yoğunluğun yükselmesi ve yüksek ısıtma toplantısına girdiği için, sıcaklığı boşaltmak için çok küçük bir yüzeysel alanın yüzeyine güvenmek yeterli değil. Aynı zamanda, QFP ve BGA gibi yüzeydeki dağ komponentlerinin geniş kullanımı yüzünden komponentler tarafından üretilen ısı büyük miktarda PCB tahtasına taşınıyor. Bu yüzden sıcaklık parçasını çözmenin en iyi yolu, sıcaklık elementiyle doğrudan iletişimde olan PCB'nin sıcaklık parçalama kapasitesini geliştirmek. İletilmek veya yayınlamak için.

3. Sıcak dağıtımı sağlamak için mantıklı düzenleme tasarımı kullanın.

Çünkü tabaktaki resinler kötü sıcak davranışlığı var, bakar yağmur hatları ve delikler sıcak yöneticilerdir, bakar yağmurunun geri kalan hızını arttırır ve sıcaklık yönetici delikleri arttırır, sıcaklık bozulmasının en önemli yoludur.

PCB'nin sıcaklık patlama kapasitesini değerlendirmek için PCB'nin uyuşturucu substratı ile çeşitli sıcaklık süreciyle oluşturduğu kompozit maddelerin ekvivalent ısı sürecini (dokuz eq) hesaplamak gerekir.

4. Özgür konvektör hava soğutmasını kabul eden ekipmanlar için, integre devreleri (ya da diğer aygıtları) vertikal ya da yatay şekilde ayarlamak en iyidir.

5. Aynı bastırılmış tahtadaki aygıtlar olabildiğince kalorifik değerlerine ve sıcaklık dağıtımına göre düzenlenmeli. Küçük kalorifik değeri veya zayıf ısı dirençliği olan aygıtlar (küçük sinyal tranzistörleri, küçük ölçekli integral devreler, elektrolik kapasitörler, etc.) soğuk hava akışının en yüksek akışını (içeri) yerleştirilmeli. Büyük ısı veya güzel ısı dirençliği olan aygıtlar (güç tranzistörleri, büyük ölçekli integral devreler, etc.) soğuk hava akışının en aşağı aşağısında yerleştirilir.

6. Ufqiy yönünde, yüksek güç aygıtları, sıcak aktarma yolunu kısaytmak için basılmış tahtın kenarına kadar yakın olduğu kadar ayarlanıyor; Dikey yönde, bu aygıtlar çalıştığında diğer aygıtların sıcaklığını azaltmak için, yüksek güç aygıtları, basılı tahtasının üstünde mümkün olduğunca yakın olarak ayarlanır. Etkiler.

7. Sıcaklık hassas cihazı en düşük sıcaklık alanına (cihazın alt alanına) yerleştirilmeli. Asla ısıtma cihazının üstüne doğrudan koyma. Çoklu aygıtlar daha tercih ederse, düzenli yatay uçakta düzenlenmeli.

8. Teşkilatının basılı tahtasının ısı parçalanması genellikle hava akışına bağlı, böylece tasarım sırasında hava akışı yolu çalışmalı ve aygıt ya da basılı devre tahtası mantıklı ayarlanmalıdır. Hava akıştığında, her zaman düşük dirençli yerlerde akıştırır. Bu yüzden, basılı devre tahtasında aygıtlar yapılandırdığında, belirli bir bölgede büyük bir havaalanı terk etmekten uzaklaştırır. Bütün makinelerin çoklu basılı devre tahtalarının yapılandırması aynı probleme dikkat etmeli.

9. PCB üzerindeki sıcak noktaların konsantrasyonundan kaçın, PCB tahtasında gücü mümkün olduğunca eşit olarak dağıtın ve PCB yüzey sıcaklığı performans üniforması ve uyumlu tutun. Tasarım sürecinde sık sık üniforma dağıtımı elde etmek zor, fakat çok yüksek güç yoğunluğu olan bölgeler tüm devrelerin normal işlemlerine etkilenmesini engellemek için sıcak noktaları önlemeli olmalı. Eğer mümkün olursa, bastırılmış devreğin sıcak etkinliğini analiz etmek gerekir. Örneğin, bazı profesyonel PCB tasarım yazılımında toplanmış termal etkilik indeksi analiz yazılım modulu devre tasarımını iyileştirmeye yardım edebilir.

10. En yüksek güç tüketimi ve ısı üretimi ile aygıtları sıcaklık patlaması için en iyi pozisyonun yakınlarında ayarlayın. PCB yazdırılmış tahtasının köşelerinde ve periferik kenarlarında yüksek ısı üretimli komponentleri yerleştirmeyin. Yazılmış tahta düzenini ayarladığında, güç dirençlerini tasarladığında, mümkün olduğunca daha büyük bir cihazı seçin ve bastırılmış PCB sıcaklık dağıtma alanı yeter.

11. Yüksek ısı dağıtma aygıtları, ilaçlara bağlanıldığında onların arasında sıcak direnişini azaltmalı. Ateş özelliklerinin ihtiyaçlarını daha iyi yerine getirmek için bazı silik gelin altında kullanılabilir (sıcaklık hareket eden silik gel katmanı gibi) ve cihazın ısını dağıtması için belli bir temas alanı koruyabilir.