Chính xác sản xuất PCB, PCB tần số cao, PCB cao tốc, PCB chuẩn, PCB đa lớp và PCB.
Nhà máy dịch vụ tùy chỉnh PCB & PCBA đáng tin cậy nhất.
Công nghệ PCB

Công nghệ PCB - Phân tích phân lớp bảng mạch in PCB

Công nghệ PCB

Công nghệ PCB - Phân tích phân lớp bảng mạch in PCB

Phân tích phân lớp bảng mạch in PCB

2021-11-07
View:511
Author:Downs

Có rất nhiều cách để giải quyết vấn đề EMI. Các phương pháp ức chế EMI hiện đại bao gồm: sử dụng lớp phủ ức chế EMI, chọn thành phần ức chế EMI phù hợp và thiết kế mô phỏng EMI. Bắt đầu với cách bố trí bảng mạch in PCB cơ bản nhất, thảo luận về vai trò và kỹ thuật thiết kế của lớp PCB xếp chồng lên nhau để kiểm soát bức xạ EMI.

Xe buýt điện

Một tụ điện có dung lượng thích hợp được đặt gần chân nguồn của IC có thể làm cho điện áp đầu ra IC thay đổi nhanh chóng. Tuy nhiên, vấn đề không kết thúc ở đó. Do đáp ứng tần số hạn chế của tụ điện, tụ điện không thể tạo ra công suất hài hòa cần thiết để điều khiển đầu ra IC một cách sạch sẽ trong băng tần đầy đủ. Ngoài ra, điện áp thoáng qua được hình thành trên bus nguồn sẽ tạo ra sự sụt giảm điện áp trên điện cảm của các đường dẫn tách rời, là nguồn gây nhiễu EMI chế độ chung chính. Chúng ta nên giải quyết những vấn đề này như thế nào?

Đối với IC trên bảng mạch của chúng tôi, lớp công suất xung quanh IC có thể được coi là một tụ điện tần số cao tuyệt vời, thu thập một phần năng lượng bị rò rỉ từ tụ điện rời rạc để cung cấp năng lượng tần số cao cho đầu ra sạch. Ngoài ra, lớp công suất tốt nên có điện cảm nhỏ hơn, do đó, tín hiệu thoáng qua được tổng hợp từ điện cảm cũng nhỏ hơn, do đó làm giảm EMI chế độ chung.

Tất nhiên, kết nối giữa lớp nguồn và pin nguồn IC phải càng ngắn càng tốt, vì tín hiệu kỹ thuật số tăng nhanh hơn và nhanh hơn dọc theo, tốt nhất là kết nối trực tiếp với pin nguồn IC. Điều này cần được thảo luận riêng.

Để kiểm soát EMI chế độ chung, mặt phẳng công suất phải giúp tách rời và có độ tự cảm đủ thấp. Máy bay năng lượng này phải là một cặp máy bay năng lượng được thiết kế tốt. Một số người có thể hỏi, tốt đến mức nào? Câu trả lời cho câu hỏi này phụ thuộc vào sự phân tầng của nguồn điện, vật liệu giữa các lớp và tần suất hoạt động (tức là chức năng của thời gian tăng IC). Thông thường, khoảng cách giữa các lớp công suất là 6 triệu, vật liệu FR4 và điện dung tương đương của lớp công suất là khoảng 75 pF trên mỗi inch vuông. Rõ ràng, khoảng cách giữa các lớp càng nhỏ, điện dung càng lớn.

Bảng mạch

Không có nhiều thiết bị có thời gian tăng từ 100 đến 300ps, nhưng dựa trên tốc độ phát triển IC hiện tại, các thiết bị có thời gian tăng trong phạm vi 100-300ps sẽ chiếm tỷ lệ cao. Đối với các mạch có thời gian tăng từ 100 đến 300ps, khoảng cách lớp 3mil sẽ không còn phù hợp với hầu hết các ứng dụng. Vào thời điểm đó, cần phải sử dụng kỹ thuật phân lớp với khoảng cách giữa các lớp nhỏ hơn 1 mils và thay thế vật liệu điện môi FR4 bằng vật liệu có hằng số điện môi cao. Bây giờ gốm và nhựa gốm có thể đáp ứng các yêu cầu thiết kế của mạch thời gian tăng từ 100 đến 300ps.

Mặc dù các vật liệu mới và các phương pháp mới có thể được sử dụng trong tương lai, thường đủ để xử lý sóng hài cao cấp và làm cho tín hiệu thoáng qua đủ thấp cho các mạch thời gian tăng từ 1 đến 3 ns phổ biến ngày nay, khoảng cách lớp 3 đến 6 triệu và vật liệu điện môi FR4. Ví dụ về thiết kế xếp chồng bảng mạch in PCB được đưa ra trong bài viết này sẽ giả định khoảng cách giữa các lớp từ 3 đến 6 mils.

Bảo vệ điện từ

Một chiến lược xếp lớp tốt từ quan điểm dấu vết tín hiệu nên là đặt tất cả các dấu vết tín hiệu trên một hoặc nhiều lớp và các lớp này nằm ngay bên cạnh các lớp nguồn hoặc tầng. Đối với nguồn điện, một chiến lược phân cấp tốt nên là lớp điện nằm cạnh lớp điện và khoảng cách giữa lớp điện và lớp điện càng nhỏ càng tốt. Đó là những gì chúng tôi gọi là chiến lược "phân tầng".

Bảng mạch in PCB xếp chồng lên nhau

Chiến lược xếp chồng nào giúp che chắn và ngăn chặn EMI? Sơ đồ xếp chồng lớp sau đây giả định rằng dòng điện cung cấp đang chảy trên một lớp duy nhất và một điện áp hoặc nhiều điện áp được phân phối trên các phần khác nhau của cùng một lớp. Trường hợp của nhiều lớp năng lượng sẽ được thảo luận sau.

4 lớp tấm

Có một số vấn đề tiềm ẩn với thiết kế của bảng 4 lớp. Đầu tiên, một tấm bốn lớp có độ dày 62 mils truyền thống, và ngay cả khi lớp tín hiệu ở bên ngoài và lớp nguồn và lớp tiếp đất ở bên trong, khoảng cách giữa lớp nguồn và lớp tiếp đất vẫn còn quá lớn.

Nếu yêu cầu chi phí là ưu tiên hàng đầu, bạn có thể xem xét hai lựa chọn thay thế bảng 4 lớp truyền thống sau đây. Cả hai giải pháp có thể cải thiện hiệu suất ức chế EMI, nhưng chỉ dành cho các ứng dụng có mật độ thành phần trên bảng đủ thấp và đủ diện tích xung quanh thành phần (đặt lớp đồng cung cấp điện mong muốn).

Đầu tiên là giải pháp ưa thích. Các lớp bên ngoài của bảng mạch in PCB là lớp hình thành và hai lớp giữa là lớp tín hiệu/nguồn điện. Nguồn điện trên lớp tín hiệu sử dụng dây rộng, có thể làm cho trở kháng đường dẫn của dòng điện thấp hơn và trở kháng của đường dẫn vi băng tín hiệu thấp hơn. Từ quan điểm điều khiển EMI, đây là cấu trúc PCB 4 lớp tốt nhất hiện nay. Trong sơ đồ thứ hai, các lớp bên ngoài sử dụng nguồn điện và mặt đất, và các tín hiệu được sử dụng ở hai lớp giữa. Những cải tiến nhỏ hơn so với các tấm 4 lớp truyền thống, với trở kháng giữa các lớp kém như các tấm 4 lớp truyền thống.

Nếu bạn muốn kiểm soát trở kháng dấu vết, sơ đồ xếp chồng ở trên phải rất cẩn thận để sắp xếp các dấu vết dưới đảo đồng cung cấp điện và mặt đất. Ngoài ra, các đảo đồng trên nguồn điện hoặc hệ thống nên được kết nối với nhau càng nhiều càng tốt để đảm bảo kết nối DC và tần số thấp.