Präzisions-Leiterplattenherstellung, Hochfrequenz-Leiterplatten, mehrschichtige Leiterplatten und Leiterplattenbestückung.
PCB-Technologie

PCB-Technologie - PCB Stackup Design

PCB-Technologie

PCB-Technologie - PCB Stackup Design

PCB Stackup Design

2021-08-12
View:399
Author:IPCB

Die Anzahl der Schichten des PCB Stackup Designs hängt von der Komplexität der Leiterplatte ab. Aus der Perspektive der PCB Verarbeitungsprozess, eine mehrschichtige Leiterplatten hergestellt durch Stapeln und Drücken mehrerer "Dual-Panel" PCBs". Allerdings, Anzahl der Schichten einer Mehrschicht PCB, die Reihenfolge der Stapelung zwischen den Schichten, und die Wahl der Platten werden vom Leiterplattendesigner bestimmt. Dies ist die sogenanntePCB Stackup Design".


Zu berücksichtigende Faktoren PCB Stackup Design

Die Anzahl der Schichten und laminiert PCB-Design eines PCB-Design hängt von folgenden Faktoren ab:

1. Hardwarekosten: Die Anzahl der Leiterplattenschichten hängt direkt mit den endgültigen Hardwarekosten zusammen. Je mehr Schichten, desto höher die Hardwarekosten. Hardware-Leiterplatten, die durch Verbraucherprodukte repräsentiert werden, haben im Allgemeinen die höchste Grenze für die Anzahl der Schichten, wie z. B. Notebook-Computer-Produkte. Die Anzahl der HauptplatinenPCB-Schichten ist normalerweise 4~6 Schichten, selten mehr als 8 Schichten;

2. Ausgang von Komponenten mit hoher Dichte: Komponenten mit hoher Dichte, die durch BGA verpackte Geräte repräsentiert werden. Die Anzahl der ausgehenden Schichten solcher Komponenten bestimmt im Wesentlichen die Anzahl der Verdrahtungsschichten der Leiterplatte;

3. Signalqualitätskontrolle: Für PCB-Design, bei dem Hochgeschwindigkeitssignale konzentriert sind, wenn der Fokus auf Signalqualität liegt, ist es erforderlich, die benachbarten Schichtverdrahtung zu reduzieren, um Übersprechen zwischen Signalen zu reduzieren. Zu diesem Zeitpunkt ist die Anzahl der Verdrahtungsschichten und die Anzahl der Referenzschichten (Erdungsschicht oder Das Verhältnis der Leistungsschicht) vorzugsweise 1:1, was die Anzahl der PCB-Designschichten erhöht; Im Gegenteil, wenn die Signalqualitätskontrolle nicht obligatorisch ist, kann das benachbarte Verdrahtungsschichtschema verwendet werden, um die Anzahl der Leiterplattenschichten zu reduzieren;

4. Schematische Signaldefinition: Schematische Signaldefinition bestimmt, ob die Leiterplattenverdrahtung "glatt" ist, und schlechte schematische Signaldefinition verursacht PCB-Verdrahtungsunregelmäßigkeiten und erhöht die Anzahl der Verdrahtungsschichten;

5. Verarbeitungsfähigkeitsgrundlinie des Leiterplattenherstellers: Leiterplattendesigner müssen die Verarbeitungsfähigkeitsgrundlinie des Leiterplattenherstellers für das Stapeldesign (Stapelmethode, Stapeldicke usw.) vollständig berücksichtigen, die vom Leiterplattendesigner angegeben wird, wie z. B.: Verarbeitungsfluss, Verarbeitungsausrüstungsfähigkeiten und häufig verwendete Leiterplattenmodell und so weiter.


PCB Stackup Design

PCB Stackup Design

PCB-Stapeldesign muss Priorität und Ausgewogenheit zwischen allen oben genannten Design-Einflussfaktoren suchen.

Allgemeine Regeln des PCB Stackup Designs

1. Die Masseschicht und die Signalschicht sollten eng gekoppelt sein, was bedeutet, dass der Abstand zwischen der Masseschicht und der Leistungsschicht so klein wie möglich sein sollte, und die dielektrische Dicke sollte so klein wie möglich sein, um die Kapazität zwischen der Leistungsschicht und der Bodenschicht zu erhöhen (wenn Sie hier nicht verstehen). Die Größe des Kondensators ist umgekehrt proportional zum Abstand).

2. Die beiden Signalschichten sollten nicht so weit wie möglich direkt nebeneinander liegen, so dass Signalübersprache wahrscheinlich auftritt, was die Leistung der Schaltung beeinflusst.

3. Für mehrschichtige Leiterplatten, wie 4-schichtige Leiterplatten und 6-schichtige Leiterplatten, ist es im Allgemeinen erforderlich, dass die Signalschicht so nah wie möglich an einer internen elektrischen Schicht (Masseschicht oder Leistungsschicht) ist, so dass die großflächige Kupferbeschichtung der internen elektrischen Schicht verwendet werden kann, um Shield die Rolle der Signalschicht zu erreichen, Dadurch wird das Übersprechen zwischen den Signalschichten effektiv vermieden.

4. Für die Hochgeschwindigkeitssignalschicht befindet sie sich im Allgemeinen zwischen zwei internen elektrischen Schichten. Ziel ist es, einerseits eine effektive Abschirmschicht für Hochgeschwindigkeitssignale bereitzustellen und andererseits die Hochgeschwindigkeitssignale auf zwei interne elektrische Schichten zu begrenzen. Reduzieren Sie Interferenzen zwischen den Schichten zu anderen Signalschichten.

5. Betrachten Sie die Symmetrie der laminierten Struktur.

6. Mehrere geerdete interne elektrische Schichten können die Erdungsimpedanz effektiv reduzieren.


Empfohlenes PCB Stackup Design

1. Legen Sie Hochfrequenzspuren auf die oberste Schicht, um die Einführung der Induktivität aufgrund der Verwendung von Durchkontaktierungen während Hochfrequenzspuren zu vermeiden. Auf der Oberschicht sind Isolator und die Datenleitung der Sende- und Empfangsschaltung direkt mit Hochfrequenzspuren verbunden.

2. Platzieren Sie eine Masseebene unter der Hochfrequenz-Signalleitung, um die Impedanz der Übertragungsverbindungsleitung zu steuern und stellen Sie auch einen sehr niedrigen Induktivitätsweg für den Rückfluss des Rückflusses bereit.

3. Legen Sie die Energieebene unter die Bodenebene. Diese beiden Referenzschichten bilden einen zusätzlichen Hochfrequenz-Bypass-Kondensator von ca. 100pF/inch2.

4. PCBStapelaufbau Anordnung von Low-Speed-Steuersignalen auf der unteren Ebene. Diese Signalleitungen haben einen großen Spielraum, um der Impedanzkonstinuität zu widerstehen, die durch die, so ist es flexibler.