Präzisions-Leiterplattenherstellung, Hochfrequenz-Leiterplatten, mehrschichtige Leiterplatten und Leiterplattenbestückung.
PCB-Neuigkeiten

PCB-Neuigkeiten - Power Integrity Design in PCB Schaltung

PCB-Neuigkeiten

PCB-Neuigkeiten - Power Integrity Design in PCB Schaltung

Power Integrity Design in PCB Schaltung

2021-11-04
View:322
Author:Kavie

In PCB-Design, Wir kümmern uns generell um die Qualität des Signals, aber manchmal beschränken wir uns oft auf die Signalleitung für die Forschung, und die Leistung und den Boden als ideale Bedingungen behandeln. Obwohl dies das Problem vereinfachen kann, es ist in High-Speed-Design. In China, Diese Vereinfachung ist nicht mehr machbar. Obwohl das direktere Ergebnis des Schaltungsdesigns in der Signalintegrität gezeigt wird, Wir dürfen das Power Integrity Design nicht vernachlässigen. Weil die Netzintegrität direkt die Signalintegrität des Endsignals beeinflusst Leiterplatte. Leistungsintegrität und Signalintegrität stehen in engem Zusammenhang, und in vielen Fällen, Die Hauptursache der Signalverzerrung ist das Stromsystem. Zum Beispiel, das Bodenprallgeräusch ist zu groß, die Auslegung des Entkopplungskondensators ist nicht geeignet, der Schleifeneinfluss ist sehr ernst, die Aufteilung der Mehrfachmacht/Bodenflugzeuge sind nicht gut, das Grundlagendesign ist unzumutbar, der Strom ist ungleichmäßig, und so weiter.

PCB


1) Stromverteilungssystem

Das Design der Leistungsintegrität ist eine sehr komplizierte Angelegenheit, aber wie die Impedanz zwischen dem Stromsystem (Leistung und Erdungsebene) in den letzten Jahren gesteuert werden kann, ist der Schlüssel zum Design. Theoretisch gilt, je niedriger die Impedanz zwischen Stromversorgungssystemen ist, desto besser, je niedriger die Impedanz, desto kleiner die Rauschamplitude und desto kleiner der Spannungsverlust. Im tatsächlichen Design können wir die Zielimpedanz bestimmen, die wir erreichen möchten, indem wir die maximale Spannung und den Stromversorgungsbereich angeben, und dann, indem wir die relevanten Faktoren in der Schaltung anpassen, wird die Impedanz jedes Teils des Stromsystems (bezogen auf die Frequenz) an die Zielimpedanz angegangen.

2) Bodenprall

Wenn die Kantenrate des Hochgeschwindigkeitsgerätes niedriger als 0,5ns ist, ist der Datenaustausch vom Datenbus mit großer Kapazität extrem schnell. Wenn es starke Wellen in der Stromschicht erzeugt, die das Signal beeinflussen können, tritt das Problem der Strominstabilität auf. Wenn sich der Strom durch die Masseschleife ändert, wird aufgrund der Schleifeninduktivität eine Spannung erzeugt. Wenn die steigende Kante verkürzt wird, erhöht sich die Stromwechselrate und die Erdprallspannung steigt. Zu diesem Zeitpunkt ist die Masseebene (Masse) kein idealer Nullpegel mehr, und die Stromversorgung ist kein ideales Gleichstrompotential. Wenn die Anzahl der gleichzeitig geschalteten Tore zunimmt, wird der Bodenprall ernster. Bei einem 128-Bit-Bus können 50-100-I/O-Leitungen an derselben Taktkante geschaltet werden. Zu diesem Zeitpunkt muss die Induktivität der Leistungs- und Masseschleifen, die an den gleichzeitig geschalteten I/O-Treiber zurückgeführt werden, so niedrig wie möglich sein. Andernfalls erscheint eine Spannungsbürste, wenn sie in Ruhe mit derselben Masse verbunden ist. Ground Bounce kann überall gesehen werden, wie Chips, Pakete, Steckverbinder oder Leiterplatten, die Ground Bounce verursachen können, was zu Problemen mit der Netzintegrität führen kann.

Aus der Perspektive der technologischen Entwicklung wird die steigende Kante des Geräts nur abnehmen, und die Breite des Buses wird nur zunehmen. Die einzige Möglichkeit, die Erdung auf einem akzeptablen Niveau zu halten, besteht darin, die Induktivität der Leistung und der Erdungsverteilung zu reduzieren. Für den Chip bedeutet es, zu einem Array-Chip zu wechseln, so viel Strom und Masse wie möglich zu platzieren und die Verkabelung so kurz wie möglich mit dem Gehäuse zu verbinden, um die Induktivität zu reduzieren. Für Verpackungen bedeutet es, Schichtverpackungen zu verschieben, um den Abstand zwischen den Energiegrundebenen näher zu machen, wie in BGA-Verpackungen verwendet. Für den Stecker bedeutet dies, mehr Massepunkte zu verwenden oder den Stecker neu zu entwerfen, um eine interne Stromversorgung und Erdungsebene zu haben, z. B. ein Stecker-basiertes Flachbandkabel. Für die Leiterplatte bedeutet es, die benachbarten Leistungs- und Masseebenen so nah wie möglich zu machen. Da die Induktivität proportional zur Länge ist, reduziert eine möglichst kurze Verbindung zwischen Netzteil und Masse das Erdgeräusch.

3) Entkopplungskondensator

Wir alle wissen, dass das Hinzufügen einiger Kondensatoren zwischen der Stromversorgung und der Erde das Rauschen des Systems reduzieren kann, aber wie viele Kondensatoren sollten auf der Leiterplatte hinzugefügt werden? Was ist der richtige Wert für jeden Kondensator? Welche Position ist besser für jeden Kondensator? Ähnlich diesen Fragen Wir denken im Allgemeinen nicht ernsthaft darüber nach, sondern tun es basierend auf der Erfahrung des Designers und denken manchmal sogar, je weniger Kapazität desto besser. Im Hochgeschwindigkeitsdesign müssen wir die parasitären Parameter des Kondensators berücksichtigen, die Anzahl der Entkopplungskondensatoren, den Kapazitätswert jedes Kondensators und die spezifische Position der Platzierung quantitativ berechnen, um sicherzustellen, dass die Impedanz des Systems im Regelbereich liegt, ein Grundprinzip Es ist der erforderliche Entkopplungskondensator, von denen keiner fehlt, und keine überschüssigen Kondensatoren.

Das obige ist die Einführung des Leistungsintegritätsdesigns in Leiterplattenschaltungen. Ipcb wird auch für Leiterplattenhersteller und Leiterplattenherstellungstechnologie.